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Abstract 

Since inverse problems are usually ill-posed it is 
necessary to use some method to reduce their 
deficiencies. The method that we choose is the 
regularization by derivative matrices. When a first 
derivative matrix is used the order is called the first. Then, 
second order regularization is when the matrix is formed 
by second order differences, and order zero means that 
the regularization matrix is the identity. There is a crucial 
problem in regularization, which is the selection of the 
regularization parameter λ. We use the L-curve as a tool 
for the selection of λ. L-curve was reintroduced in the 
literature of inverse problems by Hansen (1992a) and we 
use it in cross hole traveltime tomography. In this 
approach of tomography the goal is to obtain the 2-D 
velocity distribution from the measured values of 
traveltime between sources and receivers. Besides the L-
curve, we also propose a new extension of it, which we 
called θ-curve. We present several simulation results with 
synthetic data and we validate the feasibility of 
regularization, as well as both parameter selection 
approaches. 

 

Introduction 
The main purpose of exploration geophysics for 
hydrocarbons is to provide trustworthy images of the 
subsurface, which could indicate potential hydrocarbon 
reservoirs. Exploration seismology, better known as 
seismics, is the area of applied geophysics most 
employed for the subsurface imaging in hydrocarbons 
reservoirs. And within seismics, tomography was 
incorporated as a suitable method of data inversion. In 
this work we use traveltime tomography where the input 
data is the acoustic traveltime measured at the receivers, 
and the velocity of the 2-D medium is the inversion 
output. For the forward modeling we compute the 
traveltime by acoustic ray tracing from a given 2-D 
velocity distribution. One common way to calculate 
inverse matrix is by the generalized inverse through 
singular value decomposition, but since geophysical 
tomography is an ill-posed inverse problem, it is 

necessary to use some tool to reduce this deficiency. The 
tool that we choose is the regularization of the inverse 
problem by derivative matrices, known in the literature by 
several names, specially as Tikhonov regularization. 
Regularization has an input parameter with crucial role, 
known as regularization parameter λ, which choice is 
already a problem. In this work we use the L-curve and an 
extension of it which we called θ-curve for the selection of 
regularization parameter in cross hole traveltime 
tomography. 

 

Methodology 

Consider a modeling process where the input of some 
system is described by certain parameters contained in m 
and the output is described as Gm(=d) which is a linear 
transformation on m. If the vector d describes the 
observed output of the system, the problem is to "choose" 
the parameters m in order to minimize in some sense, the 
difference between the observed d and the prescribed 
output of the system Gm. If we measure this difference 
through the norm ||·||, our task is to find the value of m 
which minimizes 

,dm −G  

where the M×N matrix G and the data vector d with M 
elements are provided to the problem. This is called a 
least squares problem, which can be formally stated as 
follows. Considering the basic relationship 

,md G=  

we wish to minimize the error using the following objective 
function based on the work of Levenberg (1944) and 
Marquardt (1963): 

,2λL)Φ( T += eem  

where the error is given by e = d - Gm, λ is a scalar called 
the damping parameter and L2 = mT⋅m. The estimated 
solution, also called damped least squares (DLS) 
solution, is 

.GλI)G(G T-Test dm 1+=  

Model estimation can be solved using the method of 
conjugate gradient (CG), described by Hestenes and 
Stiefel (1952). This method was developed for the 
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solution of the linear systems like Ax = b, where A is a 
symmetric positive defined matrix, which contains the 
coefficients of the linear system, b is the vector of 
observed data, and x is the vector of model parameters. 
For the solution of the tomographic inverse problem we 
make the following transformations: 

,GGA T=  

.db TG=     

The CG algorithm can be used together with 
regularization. In the below system of linear equations, 
which we adopted in this work, besides the inverse 
problem itself we have the first order regularization 
expressed by the identity matrix, and also the first order 
regularization represented by the matrix D1: 
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In order to update the solution of the linear system we use 
the relation 

,dm ∆=∆G  

which leads to the minimum least squares method 

.  GG)(G T-T dm ∆=∆ 1

The above equation can be written as 

.   A- bx ∆=∆ 1

 Thus one can use the CG algorithm to calculate the 
model residue update, rather than the estimated model 
itself. It has the advantage to use the first order 
regularization to minimize the energy of the updated 
model, making the inversion as linear as possible, which 
improves the stability in linearized inversion scheme. 

 

Regularization, L-Curve and θ-curve 

Least-squares solutions very often do not provide good 
solutions and sometimes they do not even exist. In order 
to solve this problem we use a tool of regularization or 
smoothing: the ill-conditioning of the matrix G is 
regularized and the unstable least-squares estimate mest 
is consequently smoothed to greatly reduce the possibility 
of wild noise-induced fluctuation in d, hopefully without 
distorting the resulting smoothed image too far from the 
true m (Titterington, 1985). The concept of regularization 
was introduced by Tikhonov in 1963 in order to improve 
the quality of the inversion. This theory was studied by 
many researchers, and we use the Twomey (1963) 
approach. See Bassrei and Rodi (1993) for a little bit 
more about names and history in regularization theory. 
Consider the following objective function: 

,  D)λ(D)Φ( T
l

T
l eemmm +=

where λ is the regularization parameter and Dl is the lth-
order derivative matrix. If ∂Φ(m)/∂m = 0, then the 
estimated model is given by 

.GD)λDG(G T-TTest dm 1+=  

Notice that if λ = 0 we obtain the standard least squares, 
and the method is said to be damped if DTD=I (order l = 
0). If D is the first derivative matrix then the regularization 
is called to be first order and so on. The matrices D1 and 
D2 are expressed as follows: 
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Since a method of regularization is chosen, we need to 
adopt a criterium to select the best λ. Farquharson and 
Oldenburg (2004) compared two automatic ways of 
estimating the best regularization parameter to non-linear 
inverse problems: GCV and L-curve. These criteria 
initially proposed for linear problems are applied to each 
iteration of linearized inverse problems, in a typical 
iterative process to obtain the linearized solution to the 
corresponding non-linear problem. Thus, the best λ is 
estimated for each linearized iteration. To ensure that the 
regularization parameter decreases along iterations, an 
attenuation factor is multiplied by the regularization 
parameter at last iteration to limit the next maximum 
allowable parameter. 

In the present work, to our knowledge the first one in 
geophysical traveltime tomography using regularization 
with search for the optimum parameter, we employ the L-
curve and one extension of it, which we call θ-curve. In 
the L-curve the x axis represents the error between the 
observed data and the calculated one, and the y axis 
represents the amount of regularization of the solution. L-
curve was reintroduced in the literature of inverse 
problems by Hansen (1992a, 1998) and he also 
developed a toolbox (1992b). Hansen's book (1998) is a 
very good source of information for a more rigorous 
treatment of L-curve and also mentions the pioneering 
contributions in this field. 

The L-curve knee represents a trade-off between 
smoother solutions with higher errors and rougher 
solutions with smaller errors. Thus, the knee detection at 
the L-curve is an heuristic criterion to select the most 
appropriate solution. Solutions near to the curve knee are 
also acceptable and possibly more physically meaningful. 
We applied the L-curve implementing an automatic 
method to initially select the best regularization 
parameter, but solutions with regularization parameter 
near to the selected one could be also considered. Thus, 
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one can achieve a solution that simultaneously satisfy the 
criteria of error minimization, smoothness and also with 
physical meaning. The detection of the L-curve corner 
was performed using Hansen's toolbox. Considering this 
curve approximately L-shaped, one can find its knee 
searching the maximum curvature point. Although, 
secondary inflexions may occur, which may cause wrong 
detection of the best regularization parameter. Thus, the 
automatic method of knee detection adopted in this 
toolbox may lead sometimes to inadequate regularization 
parameters. Due to this problem, sometimes we needed 
to select the best regularization parameter by visual 
inspection of L-curve and the non-automatic detection of 
its knee. 

We adopted a different criterion based on a curve 
representing the cosine of angles between adjacent 
segments of L-curve discrete representation, which we 
named Theta curve. Where the curve is locally straight, 
the angle tends to zero, leading the cosine of this angle to 
one. Near the L-curve knee, the angle tends to be greater 
than its neighbors, leading the cosine to values below 
one. Thus, smaller values of cosine are associated with 
inflexions of the curve, which lead us to inspect the 
minima of the Theta curve to find the knee of L-curve and 
consequently the best regularization parameter. The 
method developed to select the best regularization 
parameter is based on the detection of the first local 
minimum of the Theta curve. This minimum is 
automatically detected where the first derivative is close 
to zero and the second derivative is positive, adopting 
thresholds due to the discretization and arithmetic 
computer precision. Thus, the first occurrence of 
minimum at Theta curve is associated with the knee of L-
curve, giving us the best regularization parameter. Further 
inflexions of the L-curve were discarded because only the 
first local minimum of Theta curve is associated with L-
curve knee. This avoids the wrong regularization 
parameter detection described earlier, when one adopts 
the criterion of maximum curvature of the L-curve. 

 

Anisotropy 

Anisotropic materials have properties which depend on 
the considered direction. In geophysics, the stratified sub-
surface can approximated as transversally isotropic due 
to preferred orientation of minerals. For an extent list of 
sedimentary rocks, anisotropy is weak, that is, values 
smaller than 1 % are common in nature (Thomsen, 1986). 
Besides, for sandstones and carbonates anisotropy can 
be treated as elliptic, making the inversion process 
simpler. 

In the anisotropic inversion, it is necessary first to 
determine the elastic properties of the medium, and then 
to calculate the velocity field. In this section we review the 
relations between elastic parameters and seismic 
velocities. We use the Hooke's law to express the relation 
between the stress (σ) and the strain (ε): 

,klijklij c εσ =   

where σij and εkl are second order tensors and cijkl is a 
fourth order tensor. Using the symmetry properties of the 
three tensors we can express cijkl as a matrix, usually 
denoted by C. For the isotropic medium the matrix C is 
expressed by 
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where the two coefficients C33 and C44 can be related to 
the so-called Lamé parameters, λ and µ, by the relations: 
C33 = λ+2µ, 
C44= µ. 

For a medium with weak elastic anisotropy the matrix C is 
given by 
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From the above coefficients three parameters can be 
defined (Thomsen, 1986): 
ε = (C11 - C33) / 2C33,  
δ = [(C13 + C44)

2 - (C33 - C44)
2
] / [2C33 (C33 - C44)], 

γ = (C66 – C44) / 2C44. 

If the anisotropy is weak the first parameter is small 
(ε<<1). The P wave and S wave velocities are, 
respectively, 
 
α0 = (C33 / ρ)

1/2
, 

β0 = (C44 / ρ)
1/2

. 

 
where the subscript denotes the angle in relation to the 
horizontal axis. With the above parameters it is possible 
to compute the P wave velocity as a function of the angle: 
 
αθ =  α0(1 + δsin

2
θ cos

2
θ + εsin

4
θ). 

 
For the particular case of elliptic anisotropy (δ= ε): 
ε = (απ/2 - α0) / α0, 

δ = (βπ/2 - β0) / β0. 

In this work we used the mild elliptic anisotropy (Carrion 
et al., 1992) which does not imply in small or weak 
anisotropy, being than a more general approach. In this 
case the matrix of elastic coefficients is given by 
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where the anisotropic parameter for the P wave is 

εP = (C11 - C33) / (C11 + C33). 

The horizontal and vertical P wave velocities are, 
respectively, 
απ/2 = (C11)

1/2
, 

απ/2 = (C33)
1/2

. 

and the horizontal and vertical S wave velocities are 
expressed by 

βπ/2 = β0 = (c55)
1/2

. 

There is a requirement that Cii > 0 in order to obtain real 
values for the above expressions. 

 

Results 

    We explore the L-curve and θ-curve approaches for the 
selection of the regularization parameter in a synthetic 
example, simulating a reef. The model space was 
discretized in 400 blocks (20 × 20), where the background 
medium is homogeneous and isotropic with 3,000 m/s, 
and the reef itself is homogeneous but anisotropic. Its 
horizontal velocity is 3,300 m/s and the vertical velocity is 
5 % less, that is, 3,135 m/s. Figure 1 displays the true 
model with its vertical velocities and the horizontal 
velocities can be seen in Figure 2. The amount of 
anisotropy is showed in Figure 3. We call this amount the 
anisotropy factor, which is the percentage difference 
between the horizontal and the vertical velocities. The 
reef represents a hydrocarbon reservoir target. This 
model is a simplification of the geological configuration of 
the MIT's Earth Resources Laboratory test field, in the 
Michigan Basin. Since the inversion scheme is 
anisotropic, for each block there is a pair of model 
parameters, in such a way that the model parameter 
vector has 800 components. The adopted acquisition 
geometry is cross hole, with 31 sources and 31 receivers, 
equally spaced. This means 961 rays or equations and 
the inverse problem is thus over-determined, that is, there 
are more equations than unknowns. Since the problem is 
ill-posed one must use some kind of regularization. Some 
portions of the model are over-illumined, where there is a 
concentration of rays, and in other regions there is a poor 
illumination, that is, a shortage of rays. We used first 
order regularization in the horizontal direction, for both P 
wave velocities (α0 and απ/2). Regularization will provide 
models that are smooth and also realistic in terms of 
geological stratification. It will also improve, although to a 
limited extension, the regions with poor illumination. 
Besides the first order regularization we also used the 
zero order with a constant regularization factor in the 

linearized inversion, in order to decrease the variation 
between iterations, avoiding abrupt changes in the 
iterative updating process that could divert beyond the 
linear behavior. We adopted 0.9 as the constant 
regularization factor for the zero order. Since this value is 
normalized and very close to one, it would also work fine 
for a different example. We noticed that for this example 
that value stabilized the inversion. The adoption of this 
value is not a problem by itself, since smaller values 
would lead to unstable solutions and larger values would 
only delay the convergence. For the choice of first order 
regularization parameter, one needs a better search 
procedure since this order of regularization is related to 
the smoothness of the recovered model in the horizontal 
direction. From one side, one wants to avoid models with 
a high smoothing and, from the other side models with 
abrupt changes in velocity are also undesired. We use the 
L-curve to obtain the compromise solution, that is, not too 
smooth and at the same time without unrealistic details. 
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    The L-curve can be seen in Figure 4. We also used the 
θ-curve that we explained before, and it is displayed in 
Figure 5. Both curves provided the same "optimum 
parameter". The recovered vertical velocity is showed in 
Figure 6 and the horizontal one in Figure 7. We can see 
that the horizontal velocity is better recovered, due to 
geometry acquisition. 

    The anisotropy factor was also well recovered (Figure 
8). It was well recovered showing the 5 % contrast of the 
anisotropic reef within the isotropic background. The 
velocities were also well recovered allowing the 
delineation of the potential hydrocarbon reservoir. 

    The above simulations were performed with noiseless 
data. In order to check the robustness of this approach 
we added Gaussian noise in such a level that the RMS 
error between the original vector traveltime and the 
corrupted one was around 1 %. The L-curve is showed in 
Figure 9 and the θ-curve in Figure 10. Here again the L-
curve and the θ-curve provided the same "optimum" 
regularization parameter. Figures 11 and 12 display, 
respectively, the recovered vertical and horizontal 
velocities. Again we notice that the horizontal velocity is 
better recovered. The anisotropy factor is also very well 
recovered as seen in Figure 13.  

 

Conclusions 

    From a set of overdetermined synthetic examples 
corrupted by noise and with an ill-conditioned kernel 
matrix we have shown that the regularization algorithm in 
question, together with its related approaches for the 
selection of the regularization parameter, is feasible in 
linearized geophysical traveltime tomography 
tomography. The comparison with non-regularized 
solution confirms the necessity of some kind of 
regularization. We considered first order regularization. 
One crucial aspect here is the selection of regularization 
parameter, usually choose by some trial and error 
approach. We used the L-curve and we proposed a 
variation of it, which we named θ-curve. The results were 
consistent, providing good to excellent approximations of 
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Figure 1 – True model. 
Vertical velocity (m/s). 
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Figure 2 – True model. 
Horizontal velocity (m/s). 
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Figure 3 – True model. 
Anisotropy factor (%). 
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Figure 4 – L-curve for first order. 

Noiseless data. 

the true model. Natural extensions of this work are the 
application of this formulation to a layered medium 
background, and application to cross hole real data. 
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Figure 5 – θ-curve for first order. 
Noiseless data. 

Figure 6 – Recovered vertical velocity 
(m/s). Noiseless data. 

Figure 7 – Recovered horizontal 
velocity (m/s). Noiseless data. 
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(%). Noiseless data. 

Figure 9 – L-curve for first order. 
Noisy data. 

Figure 10 – θ-curve for first order. 
Noisy data. 
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Figure 11 – Recovered vertical velocity 
(m/s). Noisy data. 

Figure 12 – Recovered horizontal 
velocity (m/s). Noisy data. 

Figure 13 – Recovered anisotropy 
factor (%). Noisy data. 

 

II Simpósio Brasileiro de Geofísica, Natal 21-23 de setembro de 2006. 


